SINGLE-SHOT BALANCED DETECTOR FOR GEOSPATIAL OBJECT DETECTION

Yanfeng Liu, Qiang Li, Yuan Yuan, Qi Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

16 引用 (Scopus)

摘要

Geospatial object detection is an essential task in remote sensing community. One-stage methods based on deep learning have faster running speed but cannot reach higher detection accuracy than two-stage methods. In this paper, to achieve excellent speed/accuracy trade-off for geospatial object detection, a single-shot balanced detector is presented. First, a balanced feature pyramid network (BFPN) is designed, which can balance semantic information and spatial information between high-level and shallow-level features adaptively. Second, we propose a task-interactive head (TIH). It can reduce the task misalignment between classification and regression. Extensive experiments show that the improved detector obtains significant detection accuracy with considerable speed on two benchmark datasets.

源语言英语
主期刊名2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2529-2533
页数5
ISBN(电子版)9781665405409
DOI
出版状态已出版 - 2022
活动2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022 - Hybrid, 新加坡
期限: 22 5月 202227 5月 2022

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2022-May
ISSN(印刷版)1520-6149

会议

会议2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022
国家/地区新加坡
Hybrid
时期22/05/2227/05/22

指纹

探究 'SINGLE-SHOT BALANCED DETECTOR FOR GEOSPATIAL OBJECT DETECTION' 的科研主题。它们共同构成独一无二的指纹。

引用此