SINGLE-SHOT BALANCED DETECTOR FOR GEOSPATIAL OBJECT DETECTION

Yanfeng Liu, Qiang Li, Yuan Yuan, Qi Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations

Abstract

Geospatial object detection is an essential task in remote sensing community. One-stage methods based on deep learning have faster running speed but cannot reach higher detection accuracy than two-stage methods. In this paper, to achieve excellent speed/accuracy trade-off for geospatial object detection, a single-shot balanced detector is presented. First, a balanced feature pyramid network (BFPN) is designed, which can balance semantic information and spatial information between high-level and shallow-level features adaptively. Second, we propose a task-interactive head (TIH). It can reduce the task misalignment between classification and regression. Extensive experiments show that the improved detector obtains significant detection accuracy with considerable speed on two benchmark datasets.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2529-2533
Number of pages5
ISBN (Electronic)9781665405409
DOIs
StatePublished - 2022
Event2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022 - Hybrid, Singapore
Duration: 22 May 202227 May 2022

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference2022 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityHybrid
Period22/05/2227/05/22

Keywords

  • Geospatial object detection
  • multi-scale balance learning
  • one-stage detector
  • task-interactive head

Fingerprint

Dive into the research topics of 'SINGLE-SHOT BALANCED DETECTOR FOR GEOSPATIAL OBJECT DETECTION'. Together they form a unique fingerprint.

Cite this