Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity

Yongge Li, Ruoxing Mei, Yong Xu, Jürgen Kurths, Jinqiao Duan, Ralf Metzler

科研成果: 期刊稿件文章同行评审

42 引用 (Scopus)

摘要

This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D 0), as well as a low (D m) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the Itô calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D m will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D m, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed.

源语言英语
文章编号053016
期刊New Journal of Physics
22
5
DOI
出版状态已出版 - 1 5月 2020

指纹

探究 'Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity' 的科研主题。它们共同构成独一无二的指纹。

引用此