TY - JOUR
T1 - Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity
AU - Li, Yongge
AU - Mei, Ruoxing
AU - Xu, Yong
AU - Kurths, Jürgen
AU - Duan, Jinqiao
AU - Metzler, Ralf
N1 - Publisher Copyright:
© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D 0), as well as a low (D m) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the Itô calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D m will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D m, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed.
AB - This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D 0), as well as a low (D m) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the Itô calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D m will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D m, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed.
KW - channel
KW - diffusion
KW - space-dependent diffusivity
UR - http://www.scopus.com/inward/record.url?scp=85085700887&partnerID=8YFLogxK
U2 - 10.1088/1367-2630/ab81b9
DO - 10.1088/1367-2630/ab81b9
M3 - 文章
AN - SCOPUS:85085700887
SN - 1367-2630
VL - 22
JO - New Journal of Physics
JF - New Journal of Physics
IS - 5
M1 - 053016
ER -