Multiple-layer visibility propagation-based synthetic aperture imaging through occlusion

Tao Yang, Jing Li, Jingyi Yu, Yanning Zhang, Wenguang Ma, Xiaomin Tong, Rui Yu, Lingyan Ran

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

Heavy occlusions in cluttered scenes impose significant challenges to many computer vision applications. Recent light field imaging systems provide new see-through capabilities through synthetic aperture imaging (SAI) to overcome the occlusion problem. Existing synthetic aperture imaging methods, however, emulate focusing at a specific depth layer, but are incapable of producing an all-in-focus see-through image. Alternative in-painting algorithms can generate visually-plausible results, but cannot guarantee the correctness of the results. In this paper, we present a novel depth-free all-in-focus SAI technique based on light field visibility analysis. Specifically, we partition the scene into multiple visibility layers to directly deal with layer-wise occlusion and apply an optimization framework to propagate the visibility information between multiple layers. On each layer, visibility and optimal focus depth estimation is formulated as a multiple-label energy minimization problem. The layer-wise energy integrates all of the visibility masks from its previous layers, multi-view intensity consistency and depth smoothness constraint together. We compare our method with state-of-the-art solutions, and extensive experimental results demonstrate the effectiveness and superiority of our approach.

源语言英语
页(从-至)18965-18984
页数20
期刊Sensors
15
8
DOI
出版状态已出版 - 4 8月 2015

指纹

探究 'Multiple-layer visibility propagation-based synthetic aperture imaging through occlusion' 的科研主题。它们共同构成独一无二的指纹。

引用此