Abstract
Heavy occlusions in cluttered scenes impose significant challenges to many computer vision applications. Recent light field imaging systems provide new see-through capabilities through synthetic aperture imaging (SAI) to overcome the occlusion problem. Existing synthetic aperture imaging methods, however, emulate focusing at a specific depth layer, but are incapable of producing an all-in-focus see-through image. Alternative in-painting algorithms can generate visually-plausible results, but cannot guarantee the correctness of the results. In this paper, we present a novel depth-free all-in-focus SAI technique based on light field visibility analysis. Specifically, we partition the scene into multiple visibility layers to directly deal with layer-wise occlusion and apply an optimization framework to propagate the visibility information between multiple layers. On each layer, visibility and optimal focus depth estimation is formulated as a multiple-label energy minimization problem. The layer-wise energy integrates all of the visibility masks from its previous layers, multi-view intensity consistency and depth smoothness constraint together. We compare our method with state-of-the-art solutions, and extensive experimental results demonstrate the effectiveness and superiority of our approach.
Original language | English |
---|---|
Pages (from-to) | 18965-18984 |
Number of pages | 20 |
Journal | Sensors |
Volume | 15 |
Issue number | 8 |
DOIs | |
State | Published - 4 Aug 2015 |
Keywords
- All-in-focus synthetic aperture imaging
- Camera array
- Multiple-layer visibility propagation
- Occluded object imaging