Identifying autism biomarkers in default mode network using sparse representation of resting-state fMRI data

Yudan Ren, Xintao Hu, Jinglei Lv, Lei Quo, Junwei Han, Tianming Liu

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

Exploring abnormal functional connectivities in neurodevelopmental disorders have received great attention in recent years. However, identifying functionally homogeneous brain regions as nodes in functional brain connectivity analysis is still challenging. In this paper, we adopt an effective data-driven framework of sparse representation to identify brain network nodes inspired by the nature of sparse population coding of the human brain. Using the default mode network (DMN) in patients with Autism as a test-bed, we evaluate sparse coding method and compared it with widely used group-wise independent components analysis (group-ICA). The experimental results demonstrate that the network nodes identified by sparse representation are more functionally homogeneous, which may explain the superiority of sparse representation in differentiating Autism and healthy controls by brain connectivity biomarkers.

源语言英语
主期刊名2016 IEEE International Symposium on Biomedical Imaging
主期刊副标题From Nano to Macro, ISBI 2016 - Proceedings
出版商IEEE Computer Society
1278-1281
页数4
ISBN(电子版)9781479923502
DOI
出版状态已出版 - 15 6月 2016
活动2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016 - Prague, 捷克共和国
期限: 13 4月 201616 4月 2016

出版系列

姓名Proceedings - International Symposium on Biomedical Imaging
2016-June
ISSN(印刷版)1945-7928
ISSN(电子版)1945-8452

会议

会议2016 IEEE 13th International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016
国家/地区捷克共和国
Prague
时期13/04/1616/04/16

指纹

探究 'Identifying autism biomarkers in default mode network using sparse representation of resting-state fMRI data' 的科研主题。它们共同构成独一无二的指纹。

引用此