Vertical correlation and directionality of ambient noise in deep ocean

Qiulong Yang, Kunde Yang, Ran Cao, Liya Xu, Ying Zhang, Hong Liu, Chunlong Huang, Jian Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent in deep ocean. In this paper, a standard ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution in South China Sea. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions Furthermore, the vertical characteristics of low-frequency ambient noise field were compared with the Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed in deep ocean.

源语言英语
主期刊名2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781538616543
DOI
出版状态已出版 - 4 12月 2018
活动2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018 - Kobe, 日本
期限: 28 5月 201831 5月 2018

出版系列

姓名2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018

会议

会议2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018
国家/地区日本
Kobe
时期28/05/1831/05/18

指纹

探究 'Vertical correlation and directionality of ambient noise in deep ocean' 的科研主题。它们共同构成独一无二的指纹。

引用此