Vertical correlation and directionality of ambient noise in deep ocean

Qiulong Yang, Kunde Yang, Ran Cao, Liya Xu, Ying Zhang, Hong Liu, Chunlong Huang, Jian Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent in deep ocean. In this paper, a standard ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution in South China Sea. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions Furthermore, the vertical characteristics of low-frequency ambient noise field were compared with the Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed in deep ocean.

Original languageEnglish
Title of host publication2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538616543
DOIs
StatePublished - 4 Dec 2018
Event2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018 - Kobe, Japan
Duration: 28 May 201831 May 2018

Publication series

Name2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018

Conference

Conference2018 OCEANS - MTS/IEEE Kobe Techno-Oceans, OCEANS - Kobe 2018
Country/TerritoryJapan
CityKobe
Period28/05/1831/05/18

Keywords

  • Ambient noise
  • Correlation
  • Deep ocean
  • Directionality

Fingerprint

Dive into the research topics of 'Vertical correlation and directionality of ambient noise in deep ocean'. Together they form a unique fingerprint.

Cite this