VadCLIP: Adapting Vision-Language Models for Weakly Supervised Video Anomaly Detection

Peng Wu, Xuerong Zhou, Guansong Pang, Lingru Zhou, Qingsen Yan, Peng Wang, Yanning Zhang

科研成果: 期刊稿件会议文章同行评审

50 引用 (Scopus)

摘要

The recent contrastive language-image pre-training (CLIP) model has shown great success in a wide range of image-level tasks, revealing remarkable ability for learning powerful visual representations with rich semantics. An open and worthwhile problem is efficiently adapting such a strong model to the video domain and designing a robust video anomaly detector. In this work, we propose VadCLIP, a new paradigm for weakly supervised video anomaly detection (WSVAD) by leveraging the frozen CLIP model directly without any pre-training and fine-tuning process. Unlike current works that directly feed extracted features into the weakly supervised classifier for frame-level binary classification, VadCLIP makes full use of fine-grained associations between vision and language on the strength of CLIP and involves dual branch. One branch simply utilizes visual features for coarse-grained binary classification, while the other fully leverages the fine-grained language-image alignment. With the benefit of dual branch, VadCLIP achieves both coarse-grained and fine-grained video anomaly detection by transferring pretrained knowledge from CLIP to WSVAD task. We conduct extensive experiments on two commonly-used benchmarks, demonstrating that VadCLIP achieves the best performance on both coarse-grained and fine-grained WSVAD, surpassing the state-of-the-art methods by a large margin. Specifically, VadCLIP achieves 84.51% AP and 88.02% AUC on XD-Violence and UCF-Crime, respectively. Code and features are released at https://github.com/nwpu-zxr/VadCLIP.

源语言英语
页(从-至)6074-6082
页数9
期刊Proceedings of the AAAI Conference on Artificial Intelligence
38
6
DOI
出版状态已出版 - 25 3月 2024
活动38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, 加拿大
期限: 20 2月 202427 2月 2024

指纹

探究 'VadCLIP: Adapting Vision-Language Models for Weakly Supervised Video Anomaly Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此