TY - JOUR
T1 - VadCLIP
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
AU - Wu, Peng
AU - Zhou, Xuerong
AU - Pang, Guansong
AU - Zhou, Lingru
AU - Yan, Qingsen
AU - Wang, Peng
AU - Zhang, Yanning
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - The recent contrastive language-image pre-training (CLIP) model has shown great success in a wide range of image-level tasks, revealing remarkable ability for learning powerful visual representations with rich semantics. An open and worthwhile problem is efficiently adapting such a strong model to the video domain and designing a robust video anomaly detector. In this work, we propose VadCLIP, a new paradigm for weakly supervised video anomaly detection (WSVAD) by leveraging the frozen CLIP model directly without any pre-training and fine-tuning process. Unlike current works that directly feed extracted features into the weakly supervised classifier for frame-level binary classification, VadCLIP makes full use of fine-grained associations between vision and language on the strength of CLIP and involves dual branch. One branch simply utilizes visual features for coarse-grained binary classification, while the other fully leverages the fine-grained language-image alignment. With the benefit of dual branch, VadCLIP achieves both coarse-grained and fine-grained video anomaly detection by transferring pretrained knowledge from CLIP to WSVAD task. We conduct extensive experiments on two commonly-used benchmarks, demonstrating that VadCLIP achieves the best performance on both coarse-grained and fine-grained WSVAD, surpassing the state-of-the-art methods by a large margin. Specifically, VadCLIP achieves 84.51% AP and 88.02% AUC on XD-Violence and UCF-Crime, respectively. Code and features are released at https://github.com/nwpu-zxr/VadCLIP.
AB - The recent contrastive language-image pre-training (CLIP) model has shown great success in a wide range of image-level tasks, revealing remarkable ability for learning powerful visual representations with rich semantics. An open and worthwhile problem is efficiently adapting such a strong model to the video domain and designing a robust video anomaly detector. In this work, we propose VadCLIP, a new paradigm for weakly supervised video anomaly detection (WSVAD) by leveraging the frozen CLIP model directly without any pre-training and fine-tuning process. Unlike current works that directly feed extracted features into the weakly supervised classifier for frame-level binary classification, VadCLIP makes full use of fine-grained associations between vision and language on the strength of CLIP and involves dual branch. One branch simply utilizes visual features for coarse-grained binary classification, while the other fully leverages the fine-grained language-image alignment. With the benefit of dual branch, VadCLIP achieves both coarse-grained and fine-grained video anomaly detection by transferring pretrained knowledge from CLIP to WSVAD task. We conduct extensive experiments on two commonly-used benchmarks, demonstrating that VadCLIP achieves the best performance on both coarse-grained and fine-grained WSVAD, surpassing the state-of-the-art methods by a large margin. Specifically, VadCLIP achieves 84.51% AP and 88.02% AUC on XD-Violence and UCF-Crime, respectively. Code and features are released at https://github.com/nwpu-zxr/VadCLIP.
UR - http://www.scopus.com/inward/record.url?scp=85189566038&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i6.28423
DO - 10.1609/aaai.v38i6.28423
M3 - 会议文章
AN - SCOPUS:85189566038
SN - 2159-5399
VL - 38
SP - 6074
EP - 6082
JO - Proceedings of the AAAI Conference on Artificial Intelligence
JF - Proceedings of the AAAI Conference on Artificial Intelligence
IS - 6
Y2 - 20 February 2024 through 27 February 2024
ER -