Tensor based dimension reduction for polarimetric SAR data

Mingliang Tao, Feng Zhou, Zijing Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

With the development of target decomposition theorems for polarimetric synthetic aperture radar (PolSAR) data, various informative polarimetric descriptors could be obtained. The redundancy among these descriptors poses a hindrance to accurate classification. In this paper, we propose a tensor-based dimension reduction technique, which aims to obtain a lower-dimensional intrinsic feature set from the high-dimensional polarimetric manifold. We combine 48 polarimetric features together and formulate them as a third-mode tensor. The spatial information is taken into consideration for feature reduction. Experimental results in comparison with principal component analysis (PCA), independent component analysis (ICA) and Laplacian Eigenmaps (LE) proves its effectiveness.

源语言英语
主期刊名International Geoscience and Remote Sensing Symposium (IGARSS)
出版商Institute of Electrical and Electronics Engineers Inc.
2802-2805
页数4
ISBN(电子版)9781479957750
DOI
出版状态已出版 - 4 11月 2014
已对外发布
活动Joint 2014 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014 and the 35th Canadian Symposium on Remote Sensing, CSRS 2014 - Quebec City, 加拿大
期限: 13 7月 201418 7月 2014

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)

会议

会议Joint 2014 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014 and the 35th Canadian Symposium on Remote Sensing, CSRS 2014
国家/地区加拿大
Quebec City
时期13/07/1418/07/14

指纹

探究 'Tensor based dimension reduction for polarimetric SAR data' 的科研主题。它们共同构成独一无二的指纹。

引用此