Tensor based dimension reduction for polarimetric SAR data

Mingliang Tao, Feng Zhou, Zijing Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

With the development of target decomposition theorems for polarimetric synthetic aperture radar (PolSAR) data, various informative polarimetric descriptors could be obtained. The redundancy among these descriptors poses a hindrance to accurate classification. In this paper, we propose a tensor-based dimension reduction technique, which aims to obtain a lower-dimensional intrinsic feature set from the high-dimensional polarimetric manifold. We combine 48 polarimetric features together and formulate them as a third-mode tensor. The spatial information is taken into consideration for feature reduction. Experimental results in comparison with principal component analysis (PCA), independent component analysis (ICA) and Laplacian Eigenmaps (LE) proves its effectiveness.

Original languageEnglish
Title of host publicationInternational Geoscience and Remote Sensing Symposium (IGARSS)
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2802-2805
Number of pages4
ISBN (Electronic)9781479957750
DOIs
StatePublished - 4 Nov 2014
Externally publishedYes
EventJoint 2014 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014 and the 35th Canadian Symposium on Remote Sensing, CSRS 2014 - Quebec City, Canada
Duration: 13 Jul 201418 Jul 2014

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)

Conference

ConferenceJoint 2014 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2014 and the 35th Canadian Symposium on Remote Sensing, CSRS 2014
Country/TerritoryCanada
CityQuebec City
Period13/07/1418/07/14

Keywords

  • dimension reduction
  • independent component analysis
  • radar polarimetry
  • synthetic aperture radar
  • tensor decomposition

Fingerprint

Dive into the research topics of 'Tensor based dimension reduction for polarimetric SAR data'. Together they form a unique fingerprint.

Cite this