Ship detection based on deep convolutional neural networks for polsar images

Feng Zhou, Weiwei Fan, Qiangqiang Sheng, Mingliang Tao

科研成果: 书/报告/会议事项章节会议稿件同行评审

20 引用 (Scopus)

摘要

In this paper, we proposed a ship detection method based on deep convolutional neural networks for PolSAR images. The proposed ship detector firstly segments PolSAR images into sub-samples using a sliding window of fixed size to effectively extract translational-invariant spatial features. Further, the modified faster region based convolutional neural network (Faster-RCNN) method is utilized to realize ship detection for ships with different sizes and fusion the detection result. Finally, the proposed method was validated using real measured NASA/JPL AIRSAR datasets by comparing the performance with the modified constant false alarm rate (CFAR) detector. The comparison results demonstrate the validity and generality of the proposed detection algorithm.

源语言英语
主期刊名2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
681-684
页数4
ISBN(电子版)9781538671504
DOI
出版状态已出版 - 31 10月 2018
活动38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, 西班牙
期限: 22 7月 201827 7月 2018

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2018-July

会议

会议38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
国家/地区西班牙
Valencia
时期22/07/1827/07/18

指纹

探究 'Ship detection based on deep convolutional neural networks for polsar images' 的科研主题。它们共同构成独一无二的指纹。

引用此