Ship detection based on deep convolutional neural networks for polsar images

Feng Zhou, Weiwei Fan, Qiangqiang Sheng, Mingliang Tao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Scopus citations

Abstract

In this paper, we proposed a ship detection method based on deep convolutional neural networks for PolSAR images. The proposed ship detector firstly segments PolSAR images into sub-samples using a sliding window of fixed size to effectively extract translational-invariant spatial features. Further, the modified faster region based convolutional neural network (Faster-RCNN) method is utilized to realize ship detection for ships with different sizes and fusion the detection result. Finally, the proposed method was validated using real measured NASA/JPL AIRSAR datasets by comparing the performance with the modified constant false alarm rate (CFAR) detector. The comparison results demonstrate the validity and generality of the proposed detection algorithm.

Original languageEnglish
Title of host publication2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages681-684
Number of pages4
ISBN (Electronic)9781538671504
DOIs
StatePublished - 31 Oct 2018
Event38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, Spain
Duration: 22 Jul 201827 Jul 2018

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2018-July

Conference

Conference38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
Country/TerritorySpain
CityValencia
Period22/07/1827/07/18

Keywords

  • Polarimetric synthetic aperture radar (PolSAR)
  • Ship detection
  • Terms-Deep convolutional neural networks

Fingerprint

Dive into the research topics of 'Ship detection based on deep convolutional neural networks for polsar images'. Together they form a unique fingerprint.

Cite this