SAC-COT: Sample Consensus by Sampling Compatibility Triangles in Graphs for 3-D Point Cloud Registration

Jiaqi Yang, Zhiqiang Huang, Siwen Quan, Zhaoshuai Qi, Yanning Zhang

科研成果: 期刊稿件文章同行评审

36 引用 (Scopus)

摘要

Six-degree-of-freedom (6-DOF) pose estimation from feature correspondences remains a popular and robust approach for 3-D registration. However, heavy outliers that existed in the initial correspondence set pose a great challenge to this problem. This article presents a simple yet effective estimator called SAmple Consensus by sampling COmpatibility Triangles in graphs (SAC-COT) for robust 6-DOF pose estimation and 3-D registration. The key novelty is a guided three-point sampling approach. It is based on a novel correspondence sample representation, i.e., COmpatibility Triangle (COT). We first model the correspondence set as a graph with nodes connecting compatible correspondences. Then, by ranking and sampling COTs formed by ternary loops, we show that correct hypotheses can be generated in early iteration stage. Finally, the hypothesis generated by the COT yielding to the maximum consensus is the output of SAC-COT. Extensive experiments on six data sets and extensive comparisons with the state-of-the-art estimators confirm that: 1) SAC-COT can achieve accurate registrations with a few iterations and 2) SAC-COT outperforms all competitors and is ultrarobust when confronted with Gaussian noise, data decimation, holes, clutter, partial overlap, varying scales of input correspondences, and data modality variation.

指纹

探究 'SAC-COT: Sample Consensus by Sampling Compatibility Triangles in Graphs for 3-D Point Cloud Registration' 的科研主题。它们共同构成独一无二的指纹。

引用此