TY - JOUR
T1 - SAC-COT
T2 - Sample Consensus by Sampling Compatibility Triangles in Graphs for 3-D Point Cloud Registration
AU - Yang, Jiaqi
AU - Huang, Zhiqiang
AU - Quan, Siwen
AU - Qi, Zhaoshuai
AU - Zhang, Yanning
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2022
Y1 - 2022
N2 - Six-degree-of-freedom (6-DOF) pose estimation from feature correspondences remains a popular and robust approach for 3-D registration. However, heavy outliers that existed in the initial correspondence set pose a great challenge to this problem. This article presents a simple yet effective estimator called SAmple Consensus by sampling COmpatibility Triangles in graphs (SAC-COT) for robust 6-DOF pose estimation and 3-D registration. The key novelty is a guided three-point sampling approach. It is based on a novel correspondence sample representation, i.e., COmpatibility Triangle (COT). We first model the correspondence set as a graph with nodes connecting compatible correspondences. Then, by ranking and sampling COTs formed by ternary loops, we show that correct hypotheses can be generated in early iteration stage. Finally, the hypothesis generated by the COT yielding to the maximum consensus is the output of SAC-COT. Extensive experiments on six data sets and extensive comparisons with the state-of-the-art estimators confirm that: 1) SAC-COT can achieve accurate registrations with a few iterations and 2) SAC-COT outperforms all competitors and is ultrarobust when confronted with Gaussian noise, data decimation, holes, clutter, partial overlap, varying scales of input correspondences, and data modality variation.
AB - Six-degree-of-freedom (6-DOF) pose estimation from feature correspondences remains a popular and robust approach for 3-D registration. However, heavy outliers that existed in the initial correspondence set pose a great challenge to this problem. This article presents a simple yet effective estimator called SAmple Consensus by sampling COmpatibility Triangles in graphs (SAC-COT) for robust 6-DOF pose estimation and 3-D registration. The key novelty is a guided three-point sampling approach. It is based on a novel correspondence sample representation, i.e., COmpatibility Triangle (COT). We first model the correspondence set as a graph with nodes connecting compatible correspondences. Then, by ranking and sampling COTs formed by ternary loops, we show that correct hypotheses can be generated in early iteration stage. Finally, the hypothesis generated by the COT yielding to the maximum consensus is the output of SAC-COT. Extensive experiments on six data sets and extensive comparisons with the state-of-the-art estimators confirm that: 1) SAC-COT can achieve accurate registrations with a few iterations and 2) SAC-COT outperforms all competitors and is ultrarobust when confronted with Gaussian noise, data decimation, holes, clutter, partial overlap, varying scales of input correspondences, and data modality variation.
KW - 3-D point cloud
KW - 3-D registration
KW - feature correspondences
KW - sample consensus
UR - http://www.scopus.com/inward/record.url?scp=85101783791&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2021.3058552
DO - 10.1109/TGRS.2021.3058552
M3 - 文章
AN - SCOPUS:85101783791
SN - 0196-2892
VL - 60
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
ER -