Pressure-independent velocity error estimates for (Navier-)Stokes nonconforming virtual element discretization with divergence free

Xin Liu, Yufeng Nie

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

In this paper, we propose a divergence-free nonconforming virtual element discrete scheme for (Navier-) Stokes problem based on Raviart-Thomas-like virtual element space. By choosing different (compared to Zhao et al. (SIAM J. Numer. Anal. 57, 2730–2759, 2019)) degrees of freedom and global virtual element space, we realize H1- and L2-error estimates of the velocity that are independent of the continuous pressure. Moreover, the presented scheme can also deal with polygonal meshes (including non-convex and degenerate elements), arbitrary approximation orders k, and large Reynolds numbers. Finally, we investigate several classical numerical experiments of the incompressible flow to present the performance of this numerical scheme.

源语言英语
页(从-至)477-506
页数30
期刊Numerical Algorithms
90
2
DOI
出版状态已出版 - 6月 2022

指纹

探究 'Pressure-independent velocity error estimates for (Navier-)Stokes nonconforming virtual element discretization with divergence free' 的科研主题。它们共同构成独一无二的指纹。

引用此