Pressure-independent velocity error estimates for (Navier-)Stokes nonconforming virtual element discretization with divergence free

Xin Liu, Yufeng Nie

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

In this paper, we propose a divergence-free nonconforming virtual element discrete scheme for (Navier-) Stokes problem based on Raviart-Thomas-like virtual element space. By choosing different (compared to Zhao et al. (SIAM J. Numer. Anal. 57, 2730–2759, 2019)) degrees of freedom and global virtual element space, we realize H1- and L2-error estimates of the velocity that are independent of the continuous pressure. Moreover, the presented scheme can also deal with polygonal meshes (including non-convex and degenerate elements), arbitrary approximation orders k, and large Reynolds numbers. Finally, we investigate several classical numerical experiments of the incompressible flow to present the performance of this numerical scheme.

Original languageEnglish
Pages (from-to)477-506
Number of pages30
JournalNumerical Algorithms
Volume90
Issue number2
DOIs
StatePublished - Jun 2022

Keywords

  • Divergence-free
  • Incompressible flow
  • Large Reynolds numbers
  • Nonconforming virtual element scheme
  • Polygonal meshes
  • Pressure-independent velocity error estimates

Fingerprint

Dive into the research topics of 'Pressure-independent velocity error estimates for (Navier-)Stokes nonconforming virtual element discretization with divergence free'. Together they form a unique fingerprint.

Cite this