TY - JOUR
T1 - Preparation of multi-element doped carbon nanospheres with core-shell structure derived from polystyrene as lubricating additives for improving tribological behavior
AU - Wang, Yixin
AU - Liu, Sha
AU - Wang, Tiantian
AU - Liu, Shujuan
AU - Ye, Qian
AU - Zhou, Feng
AU - Liu, Weimin
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/11
Y1 - 2024/11
N2 - In this study, the multi-element doped carbon nanospheres with core-shell structure (N,P,S-PCNs) have been successfully synthesized through the carbonization of hyper-cross-linked polystyrene nanospheres (HPSs) encapsulated with poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS). The phosphonitrilic chloride trimer can in-situ assemble on HPSs surface, forming a poly(phosphonitrilic chloride trimer) film via sulfonyldiphenol as cross-linking agent to obtain HPSs@PZS. Subsequently, the HPSs@PZS undergoes high-temperature calcination under N2 atmosphere, and PZS with a well-preserved encapsulation capability efficiently incorporated N, P and S into carbon nanospheres to gain multi-element (N,P,S) co-doped carbon nanospheres (N,P,S-PCNs) with core-shell structure. The prepared N,P,S-PCNs exhibit exceptional dispersibility and stability as lubricant additives, effectively mitigating friction (reduced to 0.106) and wear (decreased by 84.0 %). The lubrication performance of N,P,S-PCNs is exceptional due to the nanospheres' remarkable ability to enter the gaps between friction pairs and form a deposition film on the surfaces. Moreover, the nanospheres can undergo a chemical reaction with the matrix surface, resulting in the formation of a chemical protective film. The composite protective film (deposition film and chemical protective film) significantly enhances the lubricants' ability to reduce friction and resist wear.
AB - In this study, the multi-element doped carbon nanospheres with core-shell structure (N,P,S-PCNs) have been successfully synthesized through the carbonization of hyper-cross-linked polystyrene nanospheres (HPSs) encapsulated with poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS). The phosphonitrilic chloride trimer can in-situ assemble on HPSs surface, forming a poly(phosphonitrilic chloride trimer) film via sulfonyldiphenol as cross-linking agent to obtain HPSs@PZS. Subsequently, the HPSs@PZS undergoes high-temperature calcination under N2 atmosphere, and PZS with a well-preserved encapsulation capability efficiently incorporated N, P and S into carbon nanospheres to gain multi-element (N,P,S) co-doped carbon nanospheres (N,P,S-PCNs) with core-shell structure. The prepared N,P,S-PCNs exhibit exceptional dispersibility and stability as lubricant additives, effectively mitigating friction (reduced to 0.106) and wear (decreased by 84.0 %). The lubrication performance of N,P,S-PCNs is exceptional due to the nanospheres' remarkable ability to enter the gaps between friction pairs and form a deposition film on the surfaces. Moreover, the nanospheres can undergo a chemical reaction with the matrix surface, resulting in the formation of a chemical protective film. The composite protective film (deposition film and chemical protective film) significantly enhances the lubricants' ability to reduce friction and resist wear.
KW - Carbon nanospheres
KW - Core-shell structure
KW - Element doping
KW - Lubricant additives
KW - Surface modification
KW - Tribological behavior
UR - http://www.scopus.com/inward/record.url?scp=85205288368&partnerID=8YFLogxK
U2 - 10.1016/j.carbon.2024.119677
DO - 10.1016/j.carbon.2024.119677
M3 - 文章
AN - SCOPUS:85205288368
SN - 0008-6223
VL - 230
JO - Carbon
JF - Carbon
M1 - 119677
ER -