TY - JOUR
T1 - Predicting cognitive declines using longitudinally enriched representations for imaging biomarkers
AU - Alzheimer’s Disease Neuroimaging Initiative
AU - Lu, Lyujian
AU - Wang, Hua
AU - Elbeleidy, Saad
AU - Nie, Feiping
N1 - Publisher Copyright:
©2020 IEEE.
PY - 2020
Y1 - 2020
N2 - With rapid progress in high-throughput genotyping and neuroimaging, researches of complex brain disorders, such as Alzheimer’s Disease (AD), have gained significant attention in recent years. Many prediction models have been studied to relate neuroimaging measures to cognitive status over the progressions when these disease develops. Missing data is one of the biggest challenge in accurate cognitive score prediction of subjects in longitudinal neuroimaging studies. To tackle this problem, in this paper we propose a novel formulation to learn an enriched representation for imaging biomarkers that can simultaneously capture both the information conveyed by baseline neuroimaging records and that by progressive variations of varied counts of available follow-up records over time. While the numbers of the brain scans of the participants vary, the learned biomarker representation for every participant is a fixed-length vector, which enable us to use traditional learning models to study AD developments. Our new objective is formulated to maximize the ratio of the summations of a number of ℓ1-norm distances for improved robustness, which, though, is difficult to efficiently solve in general. Thus we derive a new efficient iterative solution algorithm and rigorously prove its convergence. We have performed extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. A performance gain has been achieved to predict four different cognitive scores, when we compare the original baseline representations against the learned representations with enrichments. These promising empirical results have demonstrated improved performances of our new method that validate its effectiveness.
AB - With rapid progress in high-throughput genotyping and neuroimaging, researches of complex brain disorders, such as Alzheimer’s Disease (AD), have gained significant attention in recent years. Many prediction models have been studied to relate neuroimaging measures to cognitive status over the progressions when these disease develops. Missing data is one of the biggest challenge in accurate cognitive score prediction of subjects in longitudinal neuroimaging studies. To tackle this problem, in this paper we propose a novel formulation to learn an enriched representation for imaging biomarkers that can simultaneously capture both the information conveyed by baseline neuroimaging records and that by progressive variations of varied counts of available follow-up records over time. While the numbers of the brain scans of the participants vary, the learned biomarker representation for every participant is a fixed-length vector, which enable us to use traditional learning models to study AD developments. Our new objective is formulated to maximize the ratio of the summations of a number of ℓ1-norm distances for improved robustness, which, though, is difficult to efficiently solve in general. Thus we derive a new efficient iterative solution algorithm and rigorously prove its convergence. We have performed extensive experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. A performance gain has been achieved to predict four different cognitive scores, when we compare the original baseline representations against the learned representations with enrichments. These promising empirical results have demonstrated improved performances of our new method that validate its effectiveness.
UR - http://www.scopus.com/inward/record.url?scp=85094594821&partnerID=8YFLogxK
U2 - 10.1109/CVPR42600.2020.00488
DO - 10.1109/CVPR42600.2020.00488
M3 - 会议文章
AN - SCOPUS:85094594821
SN - 1063-6919
SP - 4826
EP - 4835
JO - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
JF - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
M1 - 9156727
T2 - 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020
Y2 - 14 June 2020 through 19 June 2020
ER -