Learning Complex Heterogeneous Multimodal Fake News via Social Latent Network Inference

Mingxin Li, Yuchen Zhang, Haowei Xu, Xianghua Li, Chao Gao, Zhen Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

With the diversification of online social platforms, news dissemination has become increasingly complex, heterogeneous, and multimodal, making the fake news detection task more challenging and crucial. Previous works mainly focus on obtaining social relationships of news via retweets, limiting the accurate detection when real cascades are inaccessible. Given the proven assessment of the spreading influence of events, this paper proposes a method called HML (Complex Heterogeneous Multimodal Fake News Detection method via Latent Network Inference). Specifically, an improved social latent network inference strategy is designed to estimate the maximum likelihood of news influences under the same event. Meanwhile, a novel heterogeneous graph is built based on social attributes for multimodal news under different events. Further, to better aggregate the relationships among heterogeneous multimodal features, this paper proposes a self-supervised-based multimodal content learning strategy, to enhance, align, fuse and compare heterogeneous modal contents. Based above, a personalized heterogeneous graph representation learning is designed to classify fake news. Extensive experiments demonstrate that the proposed method outperforms the SOTA in real social media news datasets.

源语言英语
主期刊名Special Track on AI Alignment
编辑Toby Walsh, Julie Shah, Zico Kolter
出版商Association for the Advancement of Artificial Intelligence
433-441
页数9
版本1
ISBN(电子版)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOI
出版状态已出版 - 11 4月 2025
活动39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, 美国
期限: 25 2月 20254 3月 2025

出版系列

姓名Proceedings of the AAAI Conference on Artificial Intelligence
编号1
39
ISSN(印刷版)2159-5399
ISSN(电子版)2374-3468

会议

会议39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
国家/地区美国
Philadelphia
时期25/02/254/03/25

指纹

探究 'Learning Complex Heterogeneous Multimodal Fake News via Social Latent Network Inference' 的科研主题。它们共同构成独一无二的指纹。

引用此