Learning Complex Heterogeneous Multimodal Fake News via Social Latent Network Inference

Mingxin Li, Yuchen Zhang, Haowei Xu, Xianghua Li, Chao Gao, Zhen Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

With the diversification of online social platforms, news dissemination has become increasingly complex, heterogeneous, and multimodal, making the fake news detection task more challenging and crucial. Previous works mainly focus on obtaining social relationships of news via retweets, limiting the accurate detection when real cascades are inaccessible. Given the proven assessment of the spreading influence of events, this paper proposes a method called HML (Complex Heterogeneous Multimodal Fake News Detection method via Latent Network Inference). Specifically, an improved social latent network inference strategy is designed to estimate the maximum likelihood of news influences under the same event. Meanwhile, a novel heterogeneous graph is built based on social attributes for multimodal news under different events. Further, to better aggregate the relationships among heterogeneous multimodal features, this paper proposes a self-supervised-based multimodal content learning strategy, to enhance, align, fuse and compare heterogeneous modal contents. Based above, a personalized heterogeneous graph representation learning is designed to classify fake news. Extensive experiments demonstrate that the proposed method outperforms the SOTA in real social media news datasets.

Original languageEnglish
Title of host publicationSpecial Track on AI Alignment
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAssociation for the Advancement of Artificial Intelligence
Pages433-441
Number of pages9
Edition1
ISBN (Electronic)157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 157735897X, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978, 9781577358978
DOIs
StatePublished - 11 Apr 2025
Event39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: 25 Feb 20254 Mar 2025

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number1
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period25/02/254/03/25

Fingerprint

Dive into the research topics of 'Learning Complex Heterogeneous Multimodal Fake News via Social Latent Network Inference'. Together they form a unique fingerprint.

Cite this