Exploring the Patent Landscape of Sintered Metal Technologies: An Analysis Using LLM-Based AI Patent Search

Kim S. Siow, Weijie Wang, Raihana Bahru, Xu Long, Hing Wah Lee

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This study leveraged a proprietary Large Language Model (LLM) via app.amplified.ai, focusing on sintered metal technology patents for die-bonding uses in electronics packaging. This AI platform analyzed patent complexities, particularly examining 11 pre-selected patents with known activities on uses of silver or copper paste formulations as die-attach materials from companies like Infineon Technologies, Siemens, Nihon Superior Tanaka Kikinzoku, Heraeus, Hitachi and Alphametals. Following similarity assessments with these 11 pre-selected patents, 243 core patents were identified from the app.amplified.ai patent databases (of more than 150 million), retrieved and analyzed, resulting in six key clusters: 1) conductive adhesive bonding 2) metal particle bonding 3) porous metal bonding 4) sintered silver bonding, 5) substrate bonding methods 6) terminal management bonding. These clusters match the dominant Cooperative Patent Cooperation codes as follows: H01L24/83, H01L24/29 and H01L2224/8384; all methods related to connecting semiconductor using layer connector, and mainly with sintering technology.

源语言英语
主期刊名2024 IEEE 40th International Electronics Manufacturing Technology, IEMT 2024
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798350388824
DOI
出版状态已出版 - 2024
活动40th IEEE International Electronics Manufacturing Technology, IEMT 2024 - Penang, 马来西亚
期限: 16 10月 202418 10月 2024

出版系列

姓名Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium
ISSN(印刷版)1089-8190

会议

会议40th IEEE International Electronics Manufacturing Technology, IEMT 2024
国家/地区马来西亚
Penang
时期16/10/2418/10/24

指纹

探究 'Exploring the Patent Landscape of Sintered Metal Technologies: An Analysis Using LLM-Based AI Patent Search' 的科研主题。它们共同构成独一无二的指纹。

引用此