TY - GEN
T1 - Event-based Real-time Moving Object Detection Based On IMU Ego-motion Compensation
AU - Zhao, Chunhui
AU - Li, Yakun
AU - Lyu, Yang
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Accurate and timely onboard perception is a prerequisite for mobile robots to operate in highly dynamic scenarios. The bio-inspired event camera can capture more motion details than a traditional camera by triggering each pixel asynchronously and therefore is more suitable in such scenarios. Among various perception tasks based on the event camera, ego-motion removal is one fundamental procedure to reduce perception ambiguities. Recent ego-motion removal methods are mainly based on optimization processes and may be computationally expensive for robot applications. In this paper, we consider the challenging perception task of detecting fast-moving objects from an aggressively operated platform equipped with an event camera, achieving computational cost reduction by directly employing IMU motion measurement. First, we design a nonlinear warping function to capture rotation information from an IMU and to compensate for the camera motion during an asynchronous events stream. The proposed nonlinear warping function improves the compensation accuracy by 10%-15%. Afterward, we segmented the moving parts on the warped image through dynamic threshold segmentation and optical flow calculation, and clustering. Finally, we validate the proposed detection pipeline on public datasets and real-world data streams containing challenging light conditions and fast-moving objects.
AB - Accurate and timely onboard perception is a prerequisite for mobile robots to operate in highly dynamic scenarios. The bio-inspired event camera can capture more motion details than a traditional camera by triggering each pixel asynchronously and therefore is more suitable in such scenarios. Among various perception tasks based on the event camera, ego-motion removal is one fundamental procedure to reduce perception ambiguities. Recent ego-motion removal methods are mainly based on optimization processes and may be computationally expensive for robot applications. In this paper, we consider the challenging perception task of detecting fast-moving objects from an aggressively operated platform equipped with an event camera, achieving computational cost reduction by directly employing IMU motion measurement. First, we design a nonlinear warping function to capture rotation information from an IMU and to compensate for the camera motion during an asynchronous events stream. The proposed nonlinear warping function improves the compensation accuracy by 10%-15%. Afterward, we segmented the moving parts on the warped image through dynamic threshold segmentation and optical flow calculation, and clustering. Finally, we validate the proposed detection pipeline on public datasets and real-world data streams containing challenging light conditions and fast-moving objects.
UR - http://www.scopus.com/inward/record.url?scp=85168665369&partnerID=8YFLogxK
U2 - 10.1109/ICRA48891.2023.10160472
DO - 10.1109/ICRA48891.2023.10160472
M3 - 会议稿件
AN - SCOPUS:85168665369
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 690
EP - 696
BT - Proceedings - ICRA 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Y2 - 29 May 2023 through 2 June 2023
ER -