Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles

Xuanhua Li, Wallace Chik Ho Choy, Haifei Lu, Wei E.I. Sha, Aaron Ho Pui Ho

科研成果: 期刊稿件文章同行评审

300 引用 (Scopus)

摘要

It is been widely reported that plasmonic effects in metallic nanomaterials can enhance light trapping in organix solar cells (OSCs). However, typical nanoparticles (NP) of high quality (i.e., mono-dispersive) only possess a single resonant absorption peak, which inevitably limits the power conversion efficiency (PCE) enhancement to a narrow spectral range. Broadband plasmonic absorption is obviously highly desirable. In this paper, a combination of Ag nanomaterials of different shapes, including nanoparticles and nanoprisms, is proposed for this purpose. The nanomaterials are synthesized using a simple wet chemical method. Theoretical and experimental studies show that the origin of the observed PCE enhancement is the simultaneous excitation of many plasmonic low- and high-order resonances modes, which are material-, shape-, size-, and polarization-dependent. Particularly for the Ag nanoprisms studied here, the high-order resonances result in higher contribution than low-order resonances to the absorption enhancement of OSCs through an improved overlap with the active material absorption spectrum. With the incorporation of the mixed nanomaterials into the active layer, a wide-band absorption improvement is demonstrated and the short-circuit photocurrent density (Jsc) improves by 17.91%. Finally, PCE is enhanced by 19.44% as compared to pre-optimized control OSCs. These results suggest a new approach to achieve higher overall enhancement through improving broadband absorption.

源语言英语
页(从-至)2728-2735
页数8
期刊Advanced Functional Materials
23
21
DOI
出版状态已出版 - 6 6月 2013
已对外发布

指纹

探究 'Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles' 的科研主题。它们共同构成独一无二的指纹。

引用此