Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles

Xuanhua Li, Wallace Chik Ho Choy, Haifei Lu, Wei E.I. Sha, Aaron Ho Pui Ho

Research output: Contribution to journalArticlepeer-review

300 Scopus citations

Abstract

It is been widely reported that plasmonic effects in metallic nanomaterials can enhance light trapping in organix solar cells (OSCs). However, typical nanoparticles (NP) of high quality (i.e., mono-dispersive) only possess a single resonant absorption peak, which inevitably limits the power conversion efficiency (PCE) enhancement to a narrow spectral range. Broadband plasmonic absorption is obviously highly desirable. In this paper, a combination of Ag nanomaterials of different shapes, including nanoparticles and nanoprisms, is proposed for this purpose. The nanomaterials are synthesized using a simple wet chemical method. Theoretical and experimental studies show that the origin of the observed PCE enhancement is the simultaneous excitation of many plasmonic low- and high-order resonances modes, which are material-, shape-, size-, and polarization-dependent. Particularly for the Ag nanoprisms studied here, the high-order resonances result in higher contribution than low-order resonances to the absorption enhancement of OSCs through an improved overlap with the active material absorption spectrum. With the incorporation of the mixed nanomaterials into the active layer, a wide-band absorption improvement is demonstrated and the short-circuit photocurrent density (Jsc) improves by 17.91%. Finally, PCE is enhanced by 19.44% as compared to pre-optimized control OSCs. These results suggest a new approach to achieve higher overall enhancement through improving broadband absorption.

Original languageEnglish
Pages (from-to)2728-2735
Number of pages8
JournalAdvanced Functional Materials
Volume23
Issue number21
DOIs
StatePublished - 6 Jun 2013
Externally publishedYes

Keywords

  • broadband absorption enhancement
  • metallic nanoparticles
  • organic solar cell
  • shape-dependent plasmonic effect

Fingerprint

Dive into the research topics of 'Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles'. Together they form a unique fingerprint.

Cite this