A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CT: X MXene

Xinliang Li, Xiaowei Yin, Meikang Han, Changqing Song, Xinnan Sun, Hailong Xu, Laifei Cheng, Litong Zhang

科研成果: 期刊稿件文章同行评审

196 引用 (Scopus)

摘要

Herein, Ti2CTx MXene and its derivatives with various heterogeneous structures were constructed via etching and a facile oxidation treatment. The effect of different oxidation conditions on their structural evolution and phase composition was studied in detail. Compared with that of pristine Ti2CTx MXene, the improvement in the electromagnetic wave absorption capability of the as-prepared Ti2CTx/TiO2 and C/TiO2 nanocomposites was attributed to their enhanced polarization loss and stronger conductivity loss. The enhanced polarization loss is caused by the generated heterogeneous interfaces and higher specific surface area, and the stronger conductivity loss is due to the completely exfoliated carbon layers. Additionally, the remaining multilayered structure after exfoliation of the carbon layers favors energy dissipation. The C/TiO2 nanocomposites attain a minimum reflection coefficient of -50.3 dB at 7.1 and 14.2 GHz, and an effective absorption bandwidth of 4.7 GHz (covering the whole X-band) with a matching thickness of 2.1 mm; this indicates their excellent electromagnetic wave absorption properties. We believe that these nanocomposites with a heterogeneous structure also hold great promise for application in the fields of photocatalysis, lithium batteries, water purification, etc.

源语言英语
页(从-至)7621-7628
页数8
期刊Journal of Materials Chemistry C
5
30
DOI
出版状态已出版 - 2017

指纹

探究 'A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CT: X MXene' 的科研主题。它们共同构成独一无二的指纹。

引用此