A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CT: X MXene

Xinliang Li, Xiaowei Yin, Meikang Han, Changqing Song, Xinnan Sun, Hailong Xu, Laifei Cheng, Litong Zhang

Research output: Contribution to journalArticlepeer-review

196 Scopus citations

Abstract

Herein, Ti2CTx MXene and its derivatives with various heterogeneous structures were constructed via etching and a facile oxidation treatment. The effect of different oxidation conditions on their structural evolution and phase composition was studied in detail. Compared with that of pristine Ti2CTx MXene, the improvement in the electromagnetic wave absorption capability of the as-prepared Ti2CTx/TiO2 and C/TiO2 nanocomposites was attributed to their enhanced polarization loss and stronger conductivity loss. The enhanced polarization loss is caused by the generated heterogeneous interfaces and higher specific surface area, and the stronger conductivity loss is due to the completely exfoliated carbon layers. Additionally, the remaining multilayered structure after exfoliation of the carbon layers favors energy dissipation. The C/TiO2 nanocomposites attain a minimum reflection coefficient of -50.3 dB at 7.1 and 14.2 GHz, and an effective absorption bandwidth of 4.7 GHz (covering the whole X-band) with a matching thickness of 2.1 mm; this indicates their excellent electromagnetic wave absorption properties. We believe that these nanocomposites with a heterogeneous structure also hold great promise for application in the fields of photocatalysis, lithium batteries, water purification, etc.

Original languageEnglish
Pages (from-to)7621-7628
Number of pages8
JournalJournal of Materials Chemistry C
Volume5
Issue number30
DOIs
StatePublished - 2017

Fingerprint

Dive into the research topics of 'A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CT: X MXene'. Together they form a unique fingerprint.

Cite this