TY - GEN
T1 - 4D Light field superpixel and segmentation
AU - Zhu, Hao
AU - Zhang, Qi
AU - Wang, Qing
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/11/6
Y1 - 2017/11/6
N2 - Superpixel segmentation of 2D image has been widely used in many computer vision tasks. However, limited to the Gaussian imaging principle, there is not a thorough segmentation solution to the ambiguity in defocus and occlusion boundary areas. In this paper, we consider the essential element of image pixel, i.e., rays in the light space, and propose light field superpixel (LFSP) segmentation to eliminate the ambiguity. The LFSP is first defined mathematically and then a refocus-invariant metric named LFSP self-similarity is proposed to evaluate the segmentation performance. By building a clique system containing 80 neighbors in light field, a robust refocus-invariant LFSP segmentation algorithm is developed. Experimental results on both synthetic and real light field datasets demonstrate the advantages over the state-of-the-arts in terms of traditional evaluation metrics. Additionally the LFSP self-similarity evaluation under different light field refocus levels shows the refocus-invariance of the proposed algorithm.
AB - Superpixel segmentation of 2D image has been widely used in many computer vision tasks. However, limited to the Gaussian imaging principle, there is not a thorough segmentation solution to the ambiguity in defocus and occlusion boundary areas. In this paper, we consider the essential element of image pixel, i.e., rays in the light space, and propose light field superpixel (LFSP) segmentation to eliminate the ambiguity. The LFSP is first defined mathematically and then a refocus-invariant metric named LFSP self-similarity is proposed to evaluate the segmentation performance. By building a clique system containing 80 neighbors in light field, a robust refocus-invariant LFSP segmentation algorithm is developed. Experimental results on both synthetic and real light field datasets demonstrate the advantages over the state-of-the-arts in terms of traditional evaluation metrics. Additionally the LFSP self-similarity evaluation under different light field refocus levels shows the refocus-invariance of the proposed algorithm.
UR - http://www.scopus.com/inward/record.url?scp=85032912251&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2017.710
DO - 10.1109/CVPR.2017.710
M3 - 会议稿件
AN - SCOPUS:85032912251
T3 - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
SP - 6709
EP - 6717
BT - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Y2 - 21 July 2017 through 26 July 2017
ER -