4D Light field superpixel and segmentation

Hao Zhu, Qi Zhang, Qing Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

32 Scopus citations

Abstract

Superpixel segmentation of 2D image has been widely used in many computer vision tasks. However, limited to the Gaussian imaging principle, there is not a thorough segmentation solution to the ambiguity in defocus and occlusion boundary areas. In this paper, we consider the essential element of image pixel, i.e., rays in the light space, and propose light field superpixel (LFSP) segmentation to eliminate the ambiguity. The LFSP is first defined mathematically and then a refocus-invariant metric named LFSP self-similarity is proposed to evaluate the segmentation performance. By building a clique system containing 80 neighbors in light field, a robust refocus-invariant LFSP segmentation algorithm is developed. Experimental results on both synthetic and real light field datasets demonstrate the advantages over the state-of-the-arts in terms of traditional evaluation metrics. Additionally the LFSP self-similarity evaluation under different light field refocus levels shows the refocus-invariance of the proposed algorithm.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6709-6717
Number of pages9
ISBN (Electronic)9781538604571
DOIs
StatePublished - 6 Nov 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 21 Jul 201726 Jul 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period21/07/1726/07/17

Fingerprint

Dive into the research topics of '4D Light field superpixel and segmentation'. Together they form a unique fingerprint.

Cite this