Variational Bayesian based robust nonlinear filter for systems with unknown measurement loss and multi-step delay

Zhaoxu Tian, Hongpo Fu, Yongmei Cheng

科研成果: 期刊稿件文章同行评审

摘要

For nonlinear state estimation of the systems with randomly occurring measurement loss and multi-step delay (MLaMD), this paper investigates a variational Bayesian (VB) based robust cubature Kalman filter (VBRCKF), which does not require prior knowledge of the probabilities or delay steps. The proposed filter is to incorporate the VB framework into the CKF algorithm. Firstly, the randomly occurring MLaMD is modeled by using Bernoulli and categorical variables, thereby formulating a modified measurement model. Subsequently, the joint prior distribution of the system state along with the unknown variables associated with MLaMD is formulated. The joint posterior distribution is then approximately calculated by VB method. The resulting VBRCKF innovatively considers randomly occurring MLaMD without prior information and carries out adaptive estimation of these unknown variables. Finally, two simulation experiments for target tracking demonstrate the effectiveness of the proposed VBRCKF.

源语言英语
文章编号109871
期刊Signal Processing
230
DOI
出版状态已出版 - 5月 2025

指纹

探究 'Variational Bayesian based robust nonlinear filter for systems with unknown measurement loss and multi-step delay' 的科研主题。它们共同构成独一无二的指纹。

引用此