UAV Target Tracking Method Based on Deep Reinforcement Learning

Haohui Zhang, Pingkuan He, Ming Zhang, Daqing Chen, Evgeny Neretin, Bo Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

This study proposes a UAV target tracking method using reinforcement learning algorithm combined with Gate Recurrent Unit (GRU) to promote UAV target tracking and visual navigation in complex environment. Firstly, an algorithm Twins Delayed Deep Deterministic policy gradient algorithm (TD3) using deep reinforcement learning and the GRU gated loop unit are introduced. The unit is then added to the neural network to process continuous time data, and the algorithm TD3 is adopted to train the model so that it can drive the UAV to make autonomous flight decisions and accomplish target tracking. The proposed method is verified on the AirSim simulation platform.

源语言英语
主期刊名Proceedings of the International Conference on Cyber-Physical Social Intelligence, ICCSI 2022
编辑Xuemin Chen, Jun Wang, Jiacun Wang, Ying Tang
出版商Institute of Electrical and Electronics Engineers Inc.
274-277
页数4
ISBN(电子版)9781665498357
DOI
出版状态已出版 - 2022
活动2022 International Conference on Cyber-Physical Social Intelligence, ICCSI 2022 - Nanjing, 中国
期限: 18 11月 202221 11月 2022

出版系列

姓名Proceedings of the International Conference on Cyber-Physical Social Intelligence, ICCSI 2022

会议

会议2022 International Conference on Cyber-Physical Social Intelligence, ICCSI 2022
国家/地区中国
Nanjing
时期18/11/2221/11/22

指纹

探究 'UAV Target Tracking Method Based on Deep Reinforcement Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此