Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels

Yu Feng, Yuna Liu, Yong Cao, Keyu Gong, Shuyuan Liu, Jiang Qin

科研成果: 期刊稿件文章同行评审

31 引用 (Scopus)

摘要

The wall catalytic steam reforming (WCSR) is expected to be used in chemical recuperative cycle of scramjet because of its high chemical heat sink and low coke deposition. Therefore, a numerical model is established and validated based on experiments to improve utilization of chemical heat sink, generated from WCSR at supercritical pressures. The numerical results indicate that a maximal value exists at the axial distribution of chemical heat sink under the combined influence of endothermic and exothermic reactions in WCSR. The chemical heat sink increases to the maximal value, and then decreases after it. The radial chemical heat sink is of layer distribution. According to the fundamental numerical study on influence of key parameters on the WCSR, the results indicate that the maximal value of chemical heat sink has reduced by 15% as operation pressure increases from 3 MPa to 5 MPa, which is distinctly different from that of pyrolysis. As velocity decreases, the maximal value of chemical heat sink moves toward inlet and the total chemical heat decreases. In addition, the chemical heat sink increases with inlet water content, and the maximal value of chemical heat sink has increased by about 50% as inlet water content increases from 5% to 10%.

源语言英语
文章编号116738
期刊Energy
193
DOI
出版状态已出版 - 15 2月 2020
已对外发布

指纹

探究 'Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels' 的科研主题。它们共同构成独一无二的指纹。

引用此