The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy

Jiao Luo, Miaoquan Li, Weixin Yu, Hong Li

科研成果: 期刊稿件文章同行评审

116 引用 (Scopus)

摘要

The deformation behavior in isothermal compression of Ti-6Al-4V alloy is investigated in the deformation temperatures ranging from 1093 K to 1303 K, the strain rates ranging from 0.001 s-1 to 10.0 s-1 at an interval of an order magnitude and the height reductions ranging from 20% to 60% at an interval of 10%. Based on the experimental results in isothermal compression of Ti-6Al-4V alloy, the effect of processing parameters and grain size of primary α phase on the strain rate sensitivity exponent m and the strain hardening exponent n is in depth analyzed. The strain rate sensitivity exponent m at a strain of 0.7 and strain rate of 0.001 s-1 firstly tends to increase with the increasing of deformation temperature, and maximum m value is obtained at deformation temperature close to the beta-transus temperature, while at higher deformation temperature it drops to the smaller values. Moreover, the strain rate sensitivity exponent m decreases with the increasing of strain rate at the deformation temperatures below 1253 K, but the m values become maximal at a strain rate of 0.01 s-1 and the deformation temperature above 1253 K. The strain rate affects the variation of strain rate sensitivity exponent with strain. Those phenomena can be explained reasonably based on the microstructural evolution. On the other hand, the strain hardening exponent n depends strongly on the strain rate at the strains of 0.5 and 0.7. The strain affects significantly the strain hardening exponent n due to the variation of grain size of primary α phase with strain, and the competition between thermal softening and work hardening.

源语言英语
页(从-至)741-748
页数8
期刊Materials and Design
31
2
DOI
出版状态已出版 - 2月 2010

指纹

探究 'The variation of strain rate sensitivity exponent and strain hardening exponent in isothermal compression of Ti-6Al-4V alloy' 的科研主题。它们共同构成独一无二的指纹。

引用此