Superior synergistic oxidation resistance of medium-entropy carbide ceramic powders rather than multi-phase carbide ceramic powders

Jiachen Li, Fanyu Lu, Tao Li, Yanqin Fu, Junhao Zhao, Junshuai Lv, Yulei Zhang

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

To date, some questions about medium-entropy carbide ceramics and the corresponding multi-phase carbide ceramics with the same cations and proportions remain unclear. Regarding oxidation behavior, do both have synergistic oxidation abilities and what role does entropy stabilization play in medium-entropy carbides? In this work, the oxidation behaviors of HfC–ZrC–TiC multi-phase carbide (HZT-MPC) and (Hf1/3Zr1/3Ti1/3)C medium-entropy carbide (HZT-MEC) powders were investigated. After thermogravimetry (TG) oxidation, the TG curve of HZT-MPC had a bimodal distribution. The “preferential oxidation” of HfC/ZrC occurred within HZT-MPC, followed by the formation of multi-phase oxides (HfO2, ZrO2, and TiO2). The uneven compositional distribution slowed their solid solution reactions to form Ti-doped (Hf,Zr)O2 and (Hf,Zr)TiO4. The TG curve of HZT-MEC had a single peak. A uniform compositional distribution at the atomic scale promoted the rapid interdiffusion of oxides, forming Ti-doped (Hf,Zr)O2 and (Hf,Zr)TiO4 without ZrO2, HfO2, and TiO2 after TG oxidation. Additionally, HZT-MEC had a higher onset oxidation temperature (To; 470 °C) than did HZT-MPC (430 °C), and the TG single peak of HZT-MEC was between the TG bimodal peaks of HZT-MPC. Therefore, HZT-MEC showed superior oxidation resistance compared to HZT-MPC, which was attributed to the entropy stabilization effect of HZT-MEC suppressing the “preferential oxidation” of HfC/ZrC and the “delayed oxidation” of TiC, promoting the synergistic oxidation ability of multiple principal elements.

源语言英语
页(从-至)1223-1233
页数11
期刊Journal of Advanced Ceramics
13
8
DOI
出版状态已出版 - 8月 2024

指纹

探究 'Superior synergistic oxidation resistance of medium-entropy carbide ceramic powders rather than multi-phase carbide ceramic powders' 的科研主题。它们共同构成独一无二的指纹。

引用此