Study on flight dynamics of flexible projectiles based on closed-loop feedback control

Ruhao Hua, Xianxu Yuan, Zhigong Tang, Zhengyin Ye

科研成果: 期刊稿件文章同行评审

18 引用 (Scopus)

摘要

Since projectiles with large slenderness ratio are prone to elastic deformation, the effect of structural deformation is necessary to be taken into consideration for dynamic modeling. In order to obtain the precise aerodynamic performance and flight dynamic characteristics of flexible projectiles, a new numerical flight simulation system is developed based on computational fluid dynamics and generalized dynamic-mesh technique. Furthermore, flight dynamic stability of a typical flexible projectile is carried out in detail by introducing PID controller. By means of installing the sensors at various locations, the effect of different mode shapes on the characteristics of the closed-loop flight dynamic system is researched. Numerical results indicate that, when the disturbance due to elastic vibration is added into the mixed signals gained from the angular velocity/acceleration sensors, the feedback response of the closed-loop system becomes adversely divergent. In contrast, the stability of the closed-loop system is not sensitive to the elastic disturbance added to the centroid velocity and acceleration. Moreover, the stability of closed-loop system is much less affected by the unsteady aerodynamic loading due to elastic vibration than the interference of the elastic vibration on the dynamic signals detected by the sensors. The phenomenon can be explained by the requirement on the stability of the long and short period modes of flight dynamics, which can provide some guidance for the layout of the sensor and the design of control system of the projectiles with large slenderness ratio.

源语言英语
页(从-至)327-341
页数15
期刊Aerospace Science and Technology
90
DOI
出版状态已出版 - 7月 2019

指纹

探究 'Study on flight dynamics of flexible projectiles based on closed-loop feedback control' 的科研主题。它们共同构成独一无二的指纹。

引用此