TY - JOUR
T1 - Stabilizing Perovskite Structures by Tuning Tolerance Factor
T2 - Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys
AU - Li, Zhen
AU - Yang, Mengjin
AU - Park, Ji Sang
AU - Wei, Su Huai
AU - Berry, Joseph J.
AU - Zhu, Kai
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2016/1/12
Y1 - 2016/1/12
N2 - Goldschmidt tolerance factor (t) is an empirical index for predicting stable crystal structures of perovskite materials. A t value between 0.8 and 1.0 is favorable for cubic perovskite structure, and larger (>1) or smaller (<0.8) values of tolerance factor usually result in nonperovskite structures. CH(NH2)2PbI3 (FAPbI3) can exist in the perovskite α-phase (black phase) with good photovoltaic properties. However, it has a large tolerance factor and is more stable in the hexagonal δH-phase (yellow phase), with δH-to-α phase-transition temperature higher than room temperature. On the other hand, CsPbI3 is stabilized to an orthorhombic structure (δO-phase) at room temperature due to its small tolerance factor. We find that, by alloying FAPbI3 with CsPbI3, the effective tolerance factor can be tuned, and the stability of the photoactive α-phase of the mixed solid-state perovskite alloys FA1-xCsxPbI3 is enhanced, which is in agreement with our first-principles calculations. Thin films of the FA0.85Cs0.15PbI3 perovskite alloy demonstrate much improved stability in a high-humidity environment; this contrasts significantly with the pure FAPbI3 film for which the α-to-δH phase transition (associated with yellowing appearance) is accelerated by humidity environment. Due to phase stabilization, the FA0.85Cs0.15PbI3 solid-state alloy showed better solar cell performance and device stability than its FAPbI3 counterparts. Our studies suggest that tuning the tolerance factor through solid-state alloying can be a general strategy to stabilize the desired perovskite structure for solar cell applications.
AB - Goldschmidt tolerance factor (t) is an empirical index for predicting stable crystal structures of perovskite materials. A t value between 0.8 and 1.0 is favorable for cubic perovskite structure, and larger (>1) or smaller (<0.8) values of tolerance factor usually result in nonperovskite structures. CH(NH2)2PbI3 (FAPbI3) can exist in the perovskite α-phase (black phase) with good photovoltaic properties. However, it has a large tolerance factor and is more stable in the hexagonal δH-phase (yellow phase), with δH-to-α phase-transition temperature higher than room temperature. On the other hand, CsPbI3 is stabilized to an orthorhombic structure (δO-phase) at room temperature due to its small tolerance factor. We find that, by alloying FAPbI3 with CsPbI3, the effective tolerance factor can be tuned, and the stability of the photoactive α-phase of the mixed solid-state perovskite alloys FA1-xCsxPbI3 is enhanced, which is in agreement with our first-principles calculations. Thin films of the FA0.85Cs0.15PbI3 perovskite alloy demonstrate much improved stability in a high-humidity environment; this contrasts significantly with the pure FAPbI3 film for which the α-to-δH phase transition (associated with yellowing appearance) is accelerated by humidity environment. Due to phase stabilization, the FA0.85Cs0.15PbI3 solid-state alloy showed better solar cell performance and device stability than its FAPbI3 counterparts. Our studies suggest that tuning the tolerance factor through solid-state alloying can be a general strategy to stabilize the desired perovskite structure for solar cell applications.
UR - http://www.scopus.com/inward/record.url?scp=84954447853&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.5b04107
DO - 10.1021/acs.chemmater.5b04107
M3 - 文章
AN - SCOPUS:84954447853
SN - 0897-4756
VL - 28
SP - 284
EP - 292
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 1
ER -