Spectral Variability Augmented Two-Stream Network for Hyperspectral Sparse Unmixing

Ge Zhang, Shaohui Mei, Bobo Xie, Yan Feng, Qian Du

科研成果: 期刊稿件文章同行评审

11 引用 (Scopus)

摘要

Deep learning-based methods have drawn great attention in hyperspectral unmixing and obtained promising performance due to their powerful learning capability. However, few existing networks explicitly deal with the spectral variability inevitably present in hyperspectral images (HSIs), limiting their fitting performance. In this letter, a spectral variability augmented two-stream network (SVATN) is designed to explicitly address the problem of spectral variability in a deep convolutional network for sparse unmixing (SU). Specifically, the proposed SVATN maps a random input to coefficients of spectral variability in addition to abundances of endmembers, in which spectral variability is accommodated by the linear mixture model (LMM) as an augmented item. Moreover, a spatial-spectral correlation-based variability extraction (SSCVE) method is proposed to construct a spectral variability library, which serves as priors in the loss function to optimize the proposed SVATN. Experiments over synthetic and real datasets demonstrate the superiority of the proposed SVATN over several state-of-the-art methods. The code of our proposed method is released at: https://github.com/MeiShaohui/SVATN.

源语言英语
文章编号6014605
期刊IEEE Geoscience and Remote Sensing Letters
19
DOI
出版状态已出版 - 2022

指纹

探究 'Spectral Variability Augmented Two-Stream Network for Hyperspectral Sparse Unmixing' 的科研主题。它们共同构成独一无二的指纹。

引用此