Spatially regularzied sparsecem for target detection in hyperspectral images

Xiaoli Yang, Zeng Li, Jie Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Constrained energy minimization (CEM) is a popular method for target detection in hyperspectral images. Its variant SparseCEM uses a sparsity regularization term to promote the sparsity of the detection output. However, these approaches do not consider the spatial correlation of hyperspectral pixels, and target detection can further benefit from exploiting the spatial information. In this paper, we propose a novel constrained detection algorithm, referred to as Spatial-SparseCEM, to simultaneously force the sparsity of the output and piecewise continuity via proper regularizations. The formulated problem is solved efficiently by using alternating direction method of multipliers (ADMM). We illustrate the enhanced performance of the Spatial-SparseCEM algorithm via both synthetic and real hyperspectral data.

源语言英语
主期刊名2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2765-2768
页数4
ISBN(电子版)9781538671504
DOI
出版状态已出版 - 31 10月 2018
活动38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, 西班牙
期限: 22 7月 201827 7月 2018

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2018-July

会议

会议38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
国家/地区西班牙
Valencia
时期22/07/1827/07/18

指纹

探究 'Spatially regularzied sparsecem for target detection in hyperspectral images' 的科研主题。它们共同构成独一无二的指纹。

引用此