Single Atoms on a Nitrogen-Doped Boron Phosphide Monolayer: A New Promising Bifunctional Electrocatalyst for ORR and OER

Hanghang Zeng, Xinyi Liu, Fengbo Chen, Zhiguo Chen, Xiaoli Fan, Woonming Lau

科研成果: 期刊稿件文章同行评审

117 引用 (Scopus)

摘要

Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts have been pursued for decades. Meanwhile, single metal atoms embedded in a two-dimensional material substrate (2D-substrate) have emerged as an outstanding catalyst. Herein, we report on computational ORR/OER efficiencies of a series of single atom catalyst systems, with a nitrogen-doped boron phosphide monolayer (N3-BP) as the 2D-substrate, and with Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rh, Pd, Ir, and Pt as the single-atom subject (M). In brief, our density functional theory results show that the overpotentials for ORR/OER are low for CoN3-BP, NiN3-BP, and PtN3-BP, with {ηORR ηOER} of {0.36; 0.42 V}, {0.29; 0.44 V}, and {0.32; 0.25 V}, respectively. The relevant attributes such as the chemical stability of the 2D-substrate in the ORR/OER environments, immobilization of the single-atom subject on the 2D-substrate, and mechanisms of the ORR/OER activity and the catalyst recovery on the MN3-BP catalysts were carefully examined. The key to the comparative study is how the electronic states of the reaction center near the Fermi level of the catalytic system match the frontier orbitals of ORR/OER reaction intermediates. In short, our method predicts the ORR/OER catalytic efficiencies of novel catalysts via a single-atom/2D-substrate design strategy.

源语言英语
页(从-至)52549-52559
页数11
期刊ACS Applied Materials and Interfaces
12
47
DOI
出版状态已出版 - 25 11月 2020

指纹

探究 'Single Atoms on a Nitrogen-Doped Boron Phosphide Monolayer: A New Promising Bifunctional Electrocatalyst for ORR and OER' 的科研主题。它们共同构成独一无二的指纹。

引用此