Signal sampling for efficient sparse representation of resting state FMRI data

Bao Ge, Jin Wang, Jinglei Lv, Shu Zhang, Shijie Zhao, Wei Zhang, Qinghua Zhao, Xiang Li, Xi Jiang, Junwei Han, Lei Guo, Tianming Liu

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

As brain imaging data such as fMRI is growing explosively, how to reduce its size but not to lose much information becomes a pressing problem. To address this problem, this work aims to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. Specifically, we improve the online dictionary learning and sparse coding algorithm by adding a sampling step before the whole-brain sparse representation. Our comparison experiments demonstrated that this sampling-enabled sparse representation method can speedup by ten times without losing much information. In particular, our results showed that anatomical landmark-guided sampling is substantially better than statistical random sampling in reconstructing concurrent functional brain networks from the Human Connectome Project (HCP) rs-fMRI data.

源语言英语
主期刊名2015 IEEE 12th International Symposium on Biomedical Imaging, ISBI 2015
出版商IEEE Computer Society
1360-1363
页数4
ISBN(电子版)9781479923748
DOI
出版状态已出版 - 21 7月 2015
活动12th IEEE International Symposium on Biomedical Imaging, ISBI 2015 - Brooklyn, 美国
期限: 16 4月 201519 4月 2015

出版系列

姓名Proceedings - International Symposium on Biomedical Imaging
2015-July
ISSN(印刷版)1945-7928
ISSN(电子版)1945-8452

会议

会议12th IEEE International Symposium on Biomedical Imaging, ISBI 2015
国家/地区美国
Brooklyn
时期16/04/1519/04/15

指纹

探究 'Signal sampling for efficient sparse representation of resting state FMRI data' 的科研主题。它们共同构成独一无二的指纹。

引用此