Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles

Shaohong Guo, Xiaoji Xie, Ling Huang, Wei Huang

科研成果: 期刊稿件文章同行评审

98 引用 (Scopus)

摘要

Lanthanide-doped upconversion nanoparticles have received growing attention in the development of low-background, highly sensitive and selective sensors. Here, we report a water probe based on ligand-free NaYF4:Yb/Er nanoparticles, utilizing their intrinsically nonlinear upconversion process. The water molecule sensing was realized by monitoring the upconversion emission quenching, which is mainly attributed to efficient energy transfer between upconversion nanoparticles and water molecules as well as water-absorption-induced excitation energy attenuation. The nonlinear upconversion process, together with power function relationship between upconversion emission intensity and excitation power density, offers a sensitive detection of water content down to 0.008 vol % (80 ppm) in an organic solvent. As an added benefit, we show that noncontact detection of water can be achieved just by using water attenuation effect. Moreover, these upconversion nanoparticle based recyclable probes should be particularly suitable for real-time and long-term water monitoring, due to their superior chemical and physical stability. These results could provide insights into the design of upconversion nanoparticle based sensors.

源语言英语
页(从-至)847-853
页数7
期刊ACS Applied Materials and Interfaces
8
1
DOI
出版状态已出版 - 13 1月 2016
已对外发布

指纹

探究 'Sensitive Water Probing through Nonlinear Photon Upconversion of Lanthanide-Doped Nanoparticles' 的科研主题。它们共同构成独一无二的指纹。

引用此