Semi-supervised evidential label propagation algorithm for graph data

Kuang Zhou, Arnaud Martin, Quan Pan

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

In the task of community detection, there often exists some useful prior information. In this paper, a Semi-supervised clustering approach using a new Evidential Label Propagation strategy (SELP) is proposed to incorporate the domain knowledge into the community detection model. The main advantage of SELP is that it can take limited supervised knowledge to guide the detection process. The prior information of community labels is expressed in the form of mass functions initially. Then a new evidential label propagation rule is adopted to propagate the labels from labeled data to unlabeled ones. The outliers can be identified to be in a special class. The experimental results demonstrate the effectiveness of SELP.

源语言英语
主期刊名Belief Functions
主期刊副标题Theory and Applications - 4th International Conference, BELIEF 2016, Proceedings
编辑Jiřina Vejnarová, Václav Kratochvíl
出版商Springer Verlag
123-133
页数11
ISBN(印刷版)9783319455587
DOI
出版状态已出版 - 2016
活动4th International Conference on Belief Functions: Theory and Applications, BELIEF 2016 - Prague, 捷克共和国
期限: 21 9月 201623 9月 2016

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9861 LNAI
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议4th International Conference on Belief Functions: Theory and Applications, BELIEF 2016
国家/地区捷克共和国
Prague
时期21/09/1623/09/16

指纹

探究 'Semi-supervised evidential label propagation algorithm for graph data' 的科研主题。它们共同构成独一无二的指纹。

引用此