Semantic segmentation guided pseudo label mining and instance re-detection for weakly supervised object detection in remote sensing images

Xiaoliang Qian, Chao Li, Wei Wang, Xiwen Yao, Gong Cheng

科研成果: 期刊稿件文章同行评审

35 引用 (Scopus)

摘要

Weakly supervised object detection (WSOD) in remote sensing images (RSIs) has good practical value because it only requires the image-level annotations. The existing methods usually have two problems. The first problem is that many methods mine the pseudo ground truth (PGT) instances solely depending on the class confidence score (CCS), however, the reliability of CCS is not enough because of the inter-class similarity and intra-class diversity in RSIs, consequently, the reliability of corresponding PGT instances is limited, in addition, the most discriminative part with high CCS rather than the whole object is easily selected as the PGT instance. The second problem is that the object localization solely relies on the candidate proposals generated by the selective search or edge boxes algorithm, however, the localization accuracy of the candidate proposals is not enough because of the cluttered background in RSIs. To address the first problem, a semantic segmentation guided pseudo label mining (SGPLM) module is proposed, which uses a novel metric named class-specific object confidence score (COCS) to mine high-quality PGT instances. The COCS is made up of the CCS and class-specific object overlap score (COOS) which is calculated through the weakly supervised semantic segmentation. The mined PGT instances are more robust and incline to cover the whole object by combining the COOS. To handle the second problem, an instance re-detection (IR) module is proposed for improving the localization accuracy of the WSOD model, in which an enhanced PGT instance generation strategy is designed to obtain the enhanced PGT instances on the basis of the candidate proposals, and the enhanced PGT instances are used to train the instance re-classification and re-localization branches which are jointly utilized to infer the final results. The ablation studies validate the effectiveness of the SGPLM and IR modules. The comprehensive comparisons with other advanced methods show that the performance of the proposed method is state-of-the-art on two RSI datasets.

源语言英语
文章编号103301
期刊International Journal of Applied Earth Observation and Geoinformation
119
DOI
出版状态已出版 - 5月 2023

指纹

探究 'Semantic segmentation guided pseudo label mining and instance re-detection for weakly supervised object detection in remote sensing images' 的科研主题。它们共同构成独一无二的指纹。

引用此