Remote Sensing Image Scene Classification with Multi-View Collaborative Representation Network

Wang Miao, Wen Jiang, Jie Geng

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The utilization of deep learning methods in remote sensing image scene classification (RSISC) has gained significant attention, showcasing remarkable performance. However, these methods rely solely on the network for automatic weight assignment learning, which may introduce biases in attention calculations for remote sensing images. To address this issue, we propose a multi-view collaborative representation network (MCRNet) for RSISC. Specifically, we introduce a multiview collaborative representation framework (MCRF) to evaluate the impact of local features on key information within global features by different data augmentation. Furthermore, the introduction of a semantic summarization dictionary (SSD) aims to enhance the reconstruction of global semantic features through the optimization of a low-redundancy dictionary. Experiment results on two publicly available datasets confirm that the proposed model effectively improves the classification performance.

源语言英语
主期刊名IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
8547-8550
页数4
ISBN(电子版)9798350360325
DOI
出版状态已出版 - 2024
活动2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 - Athens, 希腊
期限: 7 7月 202412 7月 2024

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)

会议

会议2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024
国家/地区希腊
Athens
时期7/07/2412/07/24

指纹

探究 'Remote Sensing Image Scene Classification with Multi-View Collaborative Representation Network' 的科研主题。它们共同构成独一无二的指纹。

引用此