RADIO FREQUENCY INTERFERENCE DETECTION FOR SAR DATA USING SPECTROGRAM-BASED SEMANTIC NETWORK

Mingliang Tao, Shuting Tang, Jieshuang Li, Xiang Zhang, Yifei Fan, Jia Su

科研成果: 书/报告/会议事项章节会议稿件同行评审

11 引用 (Scopus)

摘要

Radio frequency interference (RFI) has been a pervasive and critical issue for space-borne synthetic aperture radar (SAR). The presence of RFI could lead to incorrect image interpretation and biased parameter retrieval, making the RFI detection a necessity to preserve overall data quality. In this paper, we propose an approach for detecting RFI signals in SAR raw data using time-frequency semantic analysis. Employing the U-Net convolutional neural network enables identification of target echoes and RFI signatures in 2D time-frequency representation with high probability. The detection process is realized without setting predefined thresholds, and could achieve superior performance without requiring large number of training samples.

源语言英语
主期刊名IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
1662-1665
页数4
ISBN(电子版)9781665403696
DOI
出版状态已出版 - 2021
活动2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 - Brussels, 比利时
期限: 12 7月 202116 7月 2021

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2021-July

会议

会议2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021
国家/地区比利时
Brussels
时期12/07/2116/07/21

指纹

探究 'RADIO FREQUENCY INTERFERENCE DETECTION FOR SAR DATA USING SPECTROGRAM-BASED SEMANTIC NETWORK' 的科研主题。它们共同构成独一无二的指纹。

引用此