Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers

Guangbo Chen, Tao Wang, Pan Liu, Zhongquan Liao, Haixia Zhong, Gang Wang, Panpan Zhang, Minghao Yu, Ehrenfried Zschech, Mingwei Chen, Jian Zhang, Xinliang Feng

科研成果: 期刊稿件文章同行评审

109 引用 (Scopus)

摘要

Electrocatalytic oxygen reduction reaction (ORR) is the vital process for next-generation electrochemical energy storage and conversion technologies, e.g., metal-air batteries and fuel cells. During the ORR, the O2∗ and O∗ intermediates principally combine with protons to form OOH∗ and OH∗ species, respectively, which are the proton-coupled electron transfer processes. Unfortunately, under alkaline conditions, the protons are essentially generated from the sluggish water dissociation process, which unavoidably limits the ORR kinetics. Herein, we design and synthesize a nitrogen-doped hierarchically porous carbon with homogeneously distributed ultrafine α-MoC nanoparticles (α-MoC/NHPC) as a model electrocatalyst. Theoretical investigations unveil that α-MoC on NHPC could efficiently reduce the energy barrier of the water dissociation process to generate protons, eventually promoting the proton-coupled ORR kinetics. In a 0.1 M KOH aqueous solution, α-MoC/NHPC exhibits excellent ORR performance with a high half-wave potential of 0.88 V (vs. reversible hydrogen electrode), which outperforms those for NHPC and commercial Pt/C. Moreover, as the air electrode in a zinc-air battery, α-MoC/NHPC presents a large peak power density of 200.3 mW cm-2 and long-term stability. Thereby, our approach to engineering proton-feeding centers paves a new avenue towards the understanding of ORR kinetics and the development of high-performance ORR electrocatalysts.

源语言英语
页(从-至)2849-2855
页数7
期刊Energy and Environmental Science
13
9
DOI
出版状态已出版 - 9月 2020

指纹

探究 'Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers' 的科研主题。它们共同构成独一无二的指纹。

引用此