Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network

Yu Ting Wen, Hai Jun Lei, Zhu Hong You, Bai Ying Lei, Xing Chen, Li Ping Li

科研成果: 期刊稿件文章同行评审

18 引用 (Scopus)

摘要

Prediction of protein-protein interactions (PPIs) is of great significance. To achieve this, we propose a novel computational method for PPIs prediction based on a similarity network fusion (SNF) model for integrating the physical and chemical properties of proteins. Specifically, the physical and chemical properties of protein are the protein amino acid mutation rate and its hydrophobicity, respectively. The amino acid mutation rate is extracted using a BLOSUM62 matrix, which puts the protein sequence into block substitution matrix. The SNF model is exploited to fuse protein physical and chemical features of multiple data by iteratively updating each original network. Finally, the complementary features from the fused network are fed into a label propagation algorithm (LPA) for PPIs prediction. The experimental results show that the proposed method achieves promising performance and outperforms the traditional methods for the public dataset of H. pylori, Human, and Yeast. In addition, our proposed method achieves average accuracy of 76.65%, 81.98%, 84.56%, 84.01% and 84.38% on E. coli, C. elegans, H. sapien, H. pylori and M. musculus datasets, respectively. Comparison results demonstrate that the proposed method is very promising and provides a cost-effective alternative for predicting PPIs. The source code and all datasets are available at http://pan.baidu.com/s/1dF7rp7N.

源语言英语
页(从-至)9-20
页数12
期刊Journal of Theoretical Biology
430
DOI
出版状态已出版 - 7 10月 2017
已对外发布

指纹

探究 'Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network' 的科研主题。它们共同构成独一无二的指纹。

引用此