Predicting Response Quantity from Linguistic Characteristics of Questions on Academic Social Q&A Sites

Lei Li, Anrunze Li, Xue Song, Xinran Li, Kun Huang, Edwin Mouda Ye

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Academic social Q&A websites have a lower response quantity than other types of social Q&A. To help academic social Q&A platforms implement mechanisms to improve the quantities of responses to questions that are rarely answered and to predict these quantities, this study uses 93 features representing the linguistic characteristics of academic questions, and compares several methods of prediction to determine the one that delivers the best performance. It also identifies the most useful feature set for such predictions.

源语言英语
主期刊名Digital Libraries at Times of Massive Societal Transition - 22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020, Proceedings
编辑Emi Ishita, Natalie Lee Pang, Lihong Zhou
出版商Springer Science and Business Media Deutschland GmbH
399-406
页数8
ISBN(印刷版)9783030644512
DOI
出版状态已出版 - 2020
已对外发布
活动22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020 - Kyoto, 日本
期限: 30 11月 20201 12月 2020

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12504 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议22nd International Conference on Asia-Pacific Digital Libraries, ICADL 2020
国家/地区日本
Kyoto
时期30/11/201/12/20

指纹

探究 'Predicting Response Quantity from Linguistic Characteristics of Questions on Academic Social Q&A Sites' 的科研主题。它们共同构成独一无二的指纹。

引用此